Implicitly Restarted GMRES and Arnoldi Methods for Nonsymmetric Systems of Equations

  • Authors:
  • Ronald B. Morgan

  • Affiliations:
  • -

  • Venue:
  • SIAM Journal on Matrix Analysis and Applications
  • Year:
  • 2000

Quantified Score

Hi-index 0.00

Visualization

Abstract

The generalized minimum residual method (GMRES) is well known for solving large nonsymmetric systems of linear equations. It generally uses restarting, which slows the convergence. However, some information can be retained at the time of the restart and used in the next cycle. We present algorithms that use implicit restarting in order to retain this information. Approximate eigenvectors determined from the previous subspace are included in the new subspace. This deflates the smallest eigenvalues and thus improves the convergence. The subspace that contains the approximate eigenvectors is itself a Krylov subspace, but not with the usual starting vector. The implicitly restarted FOM algorithm includes standard Ritz vectors in the subspace. The eigenvalue portion of its calculations is equivalent to Sorensen's IRA algorithm. The implicitly restarted GMRES algorithm uses harmonic Ritz vectors. This algorithm also gives a new approach to computing interior eigenvalues.