A Block Algorithm for Matrix 1-Norm Estimation, with an Application to 1-Norm Pseudospectra

  • Authors:
  • Nicholas J. Higham;Françoise Tisseur

  • Affiliations:
  • -;-

  • Venue:
  • SIAM Journal on Matrix Analysis and Applications
  • Year:
  • 2000

Quantified Score

Hi-index 0.00

Visualization

Abstract

The matrix 1-norm estimation algorithm used in LAPACK and various other software libraries and packages has proved to be a valuable tool. However, it has the limitations that it offers the user no control over the accuracy and reliability of the estimate and that it is based on level 2 BLAS operations. A block generalization of the 1-norm power method underlying the estimator is derived here and developed into a practical algorithm applicable to both real and complex matrices. The algorithm works with n × t matrices, where t is a parameter. For t=1 the original algorithm is recovered, but with two improvements (one for real matrices and one for complex matrices). The accuracy and reliability of the estimates generally increase with t and the computational kernels are level 3 BLAS operations for t 1. The last t-1 columns of the starting matrix are randomly chosen, giving the algorithm a statistical flavor. As a by-product of our investigations we identify a matrix for which the 1-norm power method takes the maximum number of iterations. As an application of the new estimator we show how it can be used to efficiently approximate 1-norm pseudospectra.