Parallel phylogenetic inference

  • Authors:
  • Quinn Snell;Michael Whiting;Mark Clement;David McLaughlin

  • Affiliations:
  • Brigham Young University, Provo, UT;Brigham Young University, Provo, UT;Brigham Young University, Provo, UT;Brigham Young University, Provo, UT

  • Venue:
  • Proceedings of the 2000 ACM/IEEE conference on Supercomputing
  • Year:
  • 2000

Quantified Score

Hi-index 0.00

Visualization

Abstract

Recent advances in DNA sequencing technology have created large data sets upon which phylogenetic inference can be performed. However, current research is limited by the prohibitive time necessary to perform tree search on even a reasonably-sized data set. Some parallel algorithms have been developed but the biological research community does not use them because they do not trust the results from newly developed parallel software. This paper presents a new phylogenetic algorithm that allows existing, trusted phylogenetic software packages to be executed in parallel using the DOGMA parallel processing system. The results presented here indicate that data sets that currently take as much as 11 months to search using current algorithms, can be searched in as little as two hours using as few as eight processors. This reduction in the time necessary to complete a phylogenetic search allows new research questions to be explored in many of the biological sciences.