An efficient algorithm for finding the CSG representation of a simple polygon

  • Authors:
  • David Dobkin;Leonidas Guibas;John Hershberger;Jack Snoeyink

  • Affiliations:
  • Princeton University;Stanford University and DEC Systems Research Center;DEC Systems Research Center;Stanford University

  • Venue:
  • SIGGRAPH '88 Proceedings of the 15th annual conference on Computer graphics and interactive techniques
  • Year:
  • 1988

Quantified Score

Hi-index 0.00

Visualization

Abstract

We consider the problem of converting boundary representations of polyhedral objects into constructive-solid-geometry (CSG) representations. The CSG representations for a polyhedron P are based on the half-spaces supporting the faces of P. For certain kinds of polyhedra this problem is equivalent to the corresponding problem for simple polygons in the plane. We give a new proof that the interior of each simple polygon can be represented by a monotone boolean formula based on the half-planes supporting the sides of the polygon and using each such half-plane only once. Our main contribution is an efficient and practical O(n log n) algorithm for doing this boundary-to-CSG conversion for a simple polygon of n sides. We also prove that such nice formulæ do not always exist for general polyhedra in three dimensions.