Prioritized resource allocation for stressed networks

  • Authors:
  • Cory C. Beard;Victor S. Frost

  • Affiliations:
  • University of Missouri-Columbia, Kansas City, MO;University of Kansas, Lawrence, KS

  • Venue:
  • IEEE/ACM Transactions on Networking (TON)
  • Year:
  • 2001

Quantified Score

Hi-index 0.00

Visualization

Abstract

Overloads that occur during times of network stress result in blocked access to all users, independent of importance. These overloads can occur because of degraded resource availability or abnormally high demand. Public broadband networks must dynamically recognize some multimedia connections as having greater importance than others and allocate resources accordingly. A new approach to connection admission control is proposed that uses an upper limit policy to optimize the admission of connections based on the weighted sum of blocking across traffic classes. This results in a simple algorithm suitable for multimedia and packet networks. This work is also the first to demonstrate that the use of an upper limit policy is superior to traditional approaches of adding extra capacity or partitioning capacity, both in terms of the amount of resources required and sensitivity to load variations. An upper limit policy can also be deployed much faster when a large overload occurs from a disaster event.