Optimized-Motion Planning: Theory and Implementation

  • Authors:
  • Cherif Ahrikencheikh;Ali A. Seireg

  • Affiliations:
  • -;-

  • Venue:
  • Optimized-Motion Planning: Theory and Implementation
  • Year:
  • 1994

Quantified Score

Hi-index 0.00

Visualization

Abstract

From the Publisher:The first handbook to the practical specifics of motion planning, Optimized-Motion Planning offers design engineers methods and insights for solving real motion planning problems in a 3-dimensional space. Complete with a disk of software programs, this unique guide allows users to design, test, and implement possible solutions, useful in a host of contexts, especially tool path planning. Beginning with a brief overview of the general class of problems examined within the book as well as available solution techniques, Part 1 familiarizes the reader with the conceptual threads that underlie each approach. This early discussion also considers the specific applications of each technique as well as its computational efficiency. Part 2 illustrates basic problem-solving methodology by considering the case of a point moving between stationary polygons in a plane. This section features algorithms for data organization and storage, the concepts of passage networks and feasibility charts, as well as the path optimization algorithm. Elaborating on the problematic model described in Part 2, Part 3 develops an algorithm for optimizing the motion of a point between stationary polyhedra in a 3-dimensional space. This algorithm is first applied to the case of nonpoint objects moving between obstacles that can be stationary or moving with known patterns. It's then used in connection with the extensively investigated problem of motion planning for multilink manipulators.