Graphical methods for robust design of a semiconductor burn-in process

  • Authors:
  • Scott L. Rosen;Chad A. Geist;Daniel A. Finke;Jyotirmaya Nanda;Russell R. Barton

  • Affiliations:
  • The Pennsylvania State University, University Park, PA;The Pennsylvania State University, University Park, PA;The Pennsylvania State University, University Park, PA;The Pennsylvania State University, University Park, PA;The Pennsylvania State University, University Park, PA

  • Venue:
  • Proceedings of the 33nd conference on Winter simulation
  • Year:
  • 2001

Quantified Score

Hi-index 0.00

Visualization

Abstract

Discrete-event simulation is a common tool for the analysis of semiconductor manufacturing systems. With the aid of a simulation model, and in conjunction with sensitivity analysis and metamodeling techniques, robust design can be performed to optimize a system. Robust design problems often include integer decision variables. This paper shows a graphical approach to robust design that is effective in the presence of discrete or qualitative variables. The graphical robust design methodology was applied to a backend semiconductor manufacturing process. Changes in specific resource capacities and product mix were examined to determine their effect on the level and variance of cycle time and work in process.