Multicast-based inference of network-internal delay distributions

  • Authors:
  • Francesco Lo Presti;N. G. Duffield;Joe Horowitz;Don Towsley

  • Affiliations:
  • Universitàt dell'Aquila, Coppito, Italy;IEEE and AT&T Labs-Research, Florham Park, NJ;University of Massachusetts, Amherst, MA and Indian Statistical Institute, New Delhi;IEEE and University of Massachusetts, Amherst, MA

  • Venue:
  • IEEE/ACM Transactions on Networking (TON)
  • Year:
  • 2002

Quantified Score

Hi-index 0.00

Visualization

Abstract

Packet delay greatly influences the overall performance of network applications. It is therefore important to identify causes and locations of delay performance degradation within a network. Existing techniques, largely based on end-to-end delay measurements of unicast traffic, are well suited to monitor and characterize the behavior of particular end-to-end paths. Within these approaches, however, it is not clear how to apportion the variable component of end-to-end delay as queueing delay at each link along a path. Moreover, there are issues of scalability for large networks.In this paper, we show how end-to-end measurements of multicast traffic can be used to infer the packet delay distribution and utilization on each link of a logical multicast tree. The idea, recently introduced in [3] and [4], is to exploit the inherent correlation between multicast observations to infer performance of paths between branch points in a tree spanning a multicast source and its receivers. The method does not depend on cooperation from intervening network elements; because of the bandwidth efficiency of multicast traffic, it is suitable for large-scale measurements of both end-to-end and internal network dynamics. We establish desirable statistical properties of the estimator, namely consistency and asymptotic normality. We evaluate the estimator through simulation and observe that it is robust with respect to moderate violations of the underlying model.