Constraint-Based Query Evaluation in Deductive Databases

  • Authors:
  • J. Han

  • Affiliations:
  • -

  • Venue:
  • IEEE Transactions on Knowledge and Data Engineering
  • Year:
  • 1994

Quantified Score

Hi-index 0.02

Visualization

Abstract

Constraints play an important role in the efficient query evaluation in deductive databases. Constraint-based query evaluation in deductive databases is investigated, with emphasis on linear recursions with function symbols. Constraints are grouped into three classes: rule constraints, integrity constraints, and query constraints. Techniques are developed for the maximal use of different kinds of constraints in rule compilation and query evaluation. The study on the roles of different classes of constraints in set-oriented evaluation of linear recursions shows the following: rule constraints should be integrated with their corresponding deduction rules in the compilation of recursions; integrity constraints, including finiteness constraints and monotonicity constraints, should be used in the analysis of finite evaluability and termination for specific queries; and query constraints, which are often useful in search space reduction and termination, should be transformed, when necessary, and should be pushed into the compiled chains as deeply as possible for efficient evaluation. The constraint-based query-processing technique integrates query-independent compilation and chain-based query evaluation methods and demonstrates its great promise in deductive query evaluation.