Generalized Version Space Learning Algorithm for Noisy and Uncertain Data

  • Authors:
  • Tzung-Pei Hong;Shian-Shyong Tseng

  • Affiliations:
  • -;-

  • Venue:
  • IEEE Transactions on Knowledge and Data Engineering
  • Year:
  • 1997

Quantified Score

Hi-index 0.01

Visualization

Abstract

This paper generalizes the learning strategy of version space to manage noisy and uncertain training data. A new learning algorithm is proposed that consists of two main phases: searching and pruning. The searching phase generates and collects possible candidates into a large set; the pruning phase then prunes this set according to various criteria to find a maximally consistent version space. When the training instances cannot completely be classified, the proposed learning algorithm can make a trade-off between including positive training instances and excluding negative ones according to the requirements of different application domains. Furthermore, suitable pruning parameters are chosen according to a given time limit, so the algorithm can also make a trade-off between time complexity and accuracy. The proposed learning algorithm is then a flexible and efficient induction method that makes the version space learning strategy more practical.