Optimal Parallel Algorithms for Problems Modeled by a Family of Intervals

  • Authors:
  • S. Olariu;J. L. Schwing;J. Zhang

  • Affiliations:
  • -;-;-

  • Venue:
  • IEEE Transactions on Parallel and Distributed Systems
  • Year:
  • 1992

Quantified Score

Hi-index 0.00

Visualization

Abstract

A family of intervals on the real line provides a natural model for a vast number of scheduling and VLSI problems. Recently, a number of parallel algorithms to solve a variety of practical problems on such a family of intervals have been proposed in the literature. The authors develop computational tools and show how they can be used for the purpose of devising cost-optimal parallel algorithms for a number of interval-related problems, including finding a largest subset of pairwise nonoverlapping intervals, a minimum dominating subset of intervals, along with algorithms to compute the shortest path between a pair of intervals and, based on the shortest path, a parallel algorithm to find the center of the family of intervals. More precisely, with an arbitrary family of n intervals as input, all the algorithms run in O(log n) time using O(n) processors in the EREW-PRAM model of computation.