Fault-Tolerant Embedding of Complete Binary Trees in Hypercubes

  • Authors:
  • M. Y. Chan;S. J. Lee

  • Affiliations:
  • -;-

  • Venue:
  • IEEE Transactions on Parallel and Distributed Systems
  • Year:
  • 1993

Quantified Score

Hi-index 0.01

Visualization

Abstract

The focus is on the following graph-theoretic question associated with the simulation ofcomplete binary trees by faulty hypercubes: if a certain number of nodes or links areremoved from an n-cube, will an (n-1)-tree still exists as a subgraph? While the generalproblem of determining whether a k-tree, kn, still exists when an arbitrary number ofnodes/links are removed from the n-cube is found to be NP-complete, an upper bound isfound on how many nodes/links can be removed and an (n-1)-tree still be guaranteed toexist. In fact, as a corollary of this, it is found that if no more than n-3 nodes/links areremoved from an (n-1)-subcube of the n-cube, an (n-1)-tree is also guaranteed to exist.