Error Thresholds and Their Relation to Optimal Mutation Rates

  • Authors:
  • Gabriela Ochoa;Inman Harvey;Hilary Buxton

  • Affiliations:
  • -;-;-

  • Venue:
  • ECAL '99 Proceedings of the 5th European Conference on Advances in Artificial Life
  • Year:
  • 1999

Quantified Score

Hi-index 0.00

Visualization

Abstract

The error threshold -- a notion from molecular evolution -- is the critical mutation rate beyond which structures obtained by the evolutionary process are destroyed more frequently than selection can reproduce them. We argue that this notion is closely related to the more familiar notion of optimal mutation rates in Evolutionary Algorithms (EAs). This correspondence has been intuitively perceived before ([9], [11]). However, no previous study, to our knowledge, has been aimed at explicitly testing the hypothesis of such a relationship. Here we propose a methodology for doing so. Results on a restricted range of fitness landscapes suggest that these two notions are indeed correlated. There is not, however, a critically precise optimal mutation rate but rather a range of values producing similar near-optimal performance. When recombination is used, both error thresholds and optimal mutation ranges are lower than in the asexual case. This knowledge may have both theoretical relevance in understanding EA behavior, and practical implications for setting optimal values of evolutionary parameters.