Normalized Gradient Vector Diffusion and Image Segmentation

  • Authors:
  • Zeyun Yu;Chandrajit L. Bajaj

  • Affiliations:
  • -;-

  • Venue:
  • ECCV '02 Proceedings of the 7th European Conference on Computer Vision-Part III
  • Year:
  • 2002

Quantified Score

Hi-index 0.01

Visualization

Abstract

In this paper, we present an approach for image segmentation, based on the existing Active Snake Model and Watershed-based Region Merging. Our algorithm includes initial segmentation using Normalized Gradient Vector Diffusion (NGVD) and region merging based on Region Adjacency Graph (RAG). We use a set of heat diffusion equations to generate a vector field over the image domain, which provides us with a natural way to define seeds as well as an external force to attract the active snakes. Then an initial segmentation of the original image can be obtained by a similar idea as seen in active snake model. Finally an RAG-based region merging technique is used to find the true segmentation as desired. The experimental results show that our NGVD-based region merging algorithm overcomes some problems as seen in classic active snake model. We will also see that our NGVD has several advantages over the traditional gradient vector diffusion.