Temporal Aggregation over Data Streams Using Multiple Granularities

  • Authors:
  • Donghui Zhang;Dimitrios Gunopulos;Vassilis J. Tsotras;Bernhard Seeger

  • Affiliations:
  • -;-;-;-

  • Venue:
  • EDBT '02 Proceedings of the 8th International Conference on Extending Database Technology: Advances in Database Technology
  • Year:
  • 2002

Quantified Score

Hi-index 0.00

Visualization

Abstract

Temporal aggregation is an important but costly operation for applications that maintain time-evolving data (data warehouses, temporal databases, etc.). In this paper we examine the problem of computing temporal aggregates over data streams. Such aggregates are maintained using multiple levels of temporal granularities: older data is aggregated using coarser granularities while more recent data is aggregated with finer detail. We present specialized indexing schemes for dynamically and progressively maintaining temporal aggregates. Moreover, these schemes can be parameterized. The levels of granularity as well as their corresponding index sizes (or validity lengths) can be dynamically adjusted. This provides a useful trade-off between aggregation detail and storage space. Analytical and experimental results show the efficiency of the proposed structures. Moreover, we discuss how the indexing schemes can be extended to solve the more general range temporal and spatio-temporal aggregation problems.