Lower Bounds on the Bounded Coefficient Complexity of Bilinear Maps

  • Authors:
  • Peter Bürgisser;Martin Lotz

  • Affiliations:
  • -;-

  • Venue:
  • FOCS '02 Proceedings of the 43rd Symposium on Foundations of Computer Science
  • Year:
  • 2002

Quantified Score

Hi-index 0.00

Visualization

Abstract

We prove lower bounds of order n log n for both the problem to multiply polynomials of degree n, and to divide polynomials with remainder, in the model of bounded coefficient arithmetic circuits over the complex numbers. These lower bounds are optimal up to order of magnitude. The proof uses a recent idea of R. Raz [Proc. 34th STOC 2002] proposed for matrix multiplication. It reduces the linear problem to multiply a random circulant matrix with a vector to the bilinear problem of cyclic convolution. We treat the arising linear problem by extending J. Morgenstern's bound [J. ACM 20, pp. 305-306, 1973] in a unitarily invariant way. This establishes a new lower bound on the bounded coefficient complexity of linear forms in terms of the singular values of the corresponding matrix.