High Performance Computing of Fluid-Structure Interactions in Hydrodynamics Applications Using Unstructured Meshes with More than One Billion Elements

  • Authors:
  • Shahrouz Aliabadi;Andrew Johnson;J. Abedi;Bruce Zellars

  • Affiliations:
  • -;-;-;-

  • Venue:
  • HiPC '02 Proceedings of the 9th International Conference on High Performance Computing
  • Year:
  • 2002

Quantified Score

Hi-index 0.00

Visualization

Abstract

A parallel finite element fluid-structure interaction solver is developed for numerical simulation of water waves interacting with floating objects. In our approach, the governing equations are the Navier-Stokes equations written for two incompressible fluids. An interface function with two distinct values serves as a marker identifying the location of the interface. The numerical method is based on writing stabilized finite element formulations in an arbitrary Lagrangian-Eulerian frame. This allows us to handle the motion of the floating objects by moving the computational nodes. In the mesh-moving schemes, we assume that the computational domain is made of elastic materials. The linear elasticity equations are solved to obtain the displacements. In order to update the position of the floating object, the nonlinear rigid body dynamics equations are coupled with the governing equations of fluids and are solved simultaneously. The mooring forces are modeled using nonlinear cables and linear spring models.