Cache-Efficient Multigrid Algorithms

  • Authors:
  • Sriram Sellappa;Siddhartha Chatterjee

  • Affiliations:
  • -;-

  • Venue:
  • ICCS '01 Proceedings of the International Conference on Computational Sciences-Part I
  • Year:
  • 2001

Quantified Score

Hi-index 0.00

Visualization

Abstract

Multigrid is widely used as an efficient solver for sparse linear systems arising from the discretization of elliptic boundary value problems. Linear relaxation methods like Gauss-Seidel and Red-Black Gauss-Seidel form the principal computational component of multigrid, and thus affect its efficiency. In the context of multigrid, these iterative solvers are executed for a small number of iterations (2-8). We exploit this property of the algorithm to develop a cache-efficient multigrid, by focusing on improving the memory behavior of the linear relaxation methods. The efficiency in our cache-efficient linear relaxation algorithm comes from two sources: reducing the number of data cache and TLB misses, and reducing the number of memory references by keeping values register-resident. Experiments on five modern computing platforms show a performance improvement of 1.15-2.7 times over a standard implementation of Full Multigrid V-Cycle.