Exploiting Application Tunability for Efficient, Predictable Parallel Resource Management

  • Authors:
  • Fangzhe Chang;Vijay Karamcheti;Zvi M. Kedem

  • Affiliations:
  • -;-;-

  • Venue:
  • IPPS '99/SPDP '99 Proceedings of the 13th International Symposium on Parallel Processing and the 10th Symposium on Parallel and Distributed Processing
  • Year:
  • 1999

Quantified Score

Hi-index 0.00

Visualization

Abstract

Parallel computing is becoming increasing central and mainstream, driven both by the widespread availability of commodity SMP and high-performance cluster platforms, as well as the growing use of parallelism in general-purpose applications such as image recognition, virtual reality, and media processing. In addition to performance requirements, the latter computations impose soft real-time constraints, necessitating efficient, predictable parallel resource management. In this paper, we propose a novel approach for increasing parallel system utilization while meeting application soft real-time deadlines. Our approach exploits the application tunability found in several general-purpose computations. Tunability refers to an application's ability to trade off resource requirements over time, while maintaining a desired level of output quality. We first describe language extensions to support tunability in the Calypso system, then characterize the performance benefits of tunability, using a synthetic task system to systematically identify its benefits. Our results show that application tunability is convenient to express and can significantly improve parallel system utilization for computations with predictability requirements.