Prototyping N-Body Simulation in Proteus

  • Authors:
  • Peter Mills;Lars S. Nyland;Jan Prins;John H. Reif

  • Affiliations:
  • -;-;-;-

  • Venue:
  • IPPS '92 Proceedings of the 6th International Parallel Processing Symposium
  • Year:
  • 1992

Quantified Score

Hi-index 0.00

Visualization

Abstract

This paper explores the use of Proteus, an architecture-independent language suitable for prototyping parallel and distributed programs. Proteus is a high-level imperative notation based on sets and sequences with a single construct for the parallel composition of processes communicating through shared memory. Several different parallel algorithms for N-body simulation are presented in Proteus, illustrating how Proteus provides a common foundation for expressing the various parallel programming models. This common foundation allows prototype parallel programs to be tested and evolved without the use of machine-specific languages. To transform prototypes to implementations on specific architectures, program refinement techniques are utilized. Refinement strategies are illustrated that target broad-spectrum parallel intermediate languages, and their viability is demonstrated by refining an N-body algorithm to data-parallel CVL code.