Efficient Algorithms for Locating the Length-Constrained Heaviest Segments, with Applications to Biomolecular Sequence Analysis

  • Authors:
  • Yaw-Ling Lin;Tao Jiang;Kun-Mao Chao

  • Affiliations:
  • -;-;-

  • Venue:
  • MFCS '02 Proceedings of the 27th International Symposium on Mathematical Foundations of Computer Science
  • Year:
  • 2002

Quantified Score

Hi-index 0.00

Visualization

Abstract

We study two fundamental problems concerning the search for interesting regions in sequences: (i) given a sequence of real numbers of length n and an upper bound U, find a consecutive subsequence of length at most U with the maximum sum and (ii) given a sequence of real numbers of length n and a lower bound L, find a consecutive subsequence of length at least L with the maximum average. We present an O(n)- time algorithm for the first problem and an O(n log L)-time algorithm for the second. The algorithms have potential applications in several areas of biomolecular sequence analysis including locating GC-rich regions in a genomic DNA sequence, post-processing sequence alignments, annotating multiple sequence alignments, and computing length-constrained ungapped local alignment. Our preliminary tests on both simulated and real data demonstrate that the algorithms are very efficient and able to locate useful (such as GC-rich) regions.