The Genetic Code-Like Transformations and Their Effect on Learning Functions

  • Authors:
  • Hillol Kargupta

  • Affiliations:
  • -

  • Venue:
  • PPSN VI Proceedings of the 6th International Conference on Parallel Problem Solving from Nature
  • Year:
  • 2000

Quantified Score

Hi-index 0.00

Visualization

Abstract

The natural gene expression process evaluates the fitness of a DNA-string through a sequence of representation transformations. The genetic code defines one such transformation in this process. This paper shows that genetic code-like transformations introduce an interesting property in the representation of a genetic fitness function. It points out that such adaptive transformations can convert some functions with an exponentially large description in Fourier basis to one that is highly suitable for polynomial-size approximation. Such transformations can construct a Fourier representation with only a polynomial number of terms that are exponentially more significant than the rest when fitter chromosomes are given more copies through a redundant, equivalent representation. This is a very desirable property [2, 3] for efficient function-induction from data which is a fundamental problem in learning, data mining, and optimization.