Quantum Computation of Fluid Dynamics

  • Authors:
  • Jeffrey Yepez

  • Affiliations:
  • -

  • Venue:
  • QCQC '98 Selected papers from the First NASA International Conference on Quantum Computing and Quantum Communications
  • Year:
  • 1998

Quantified Score

Hi-index 0.00

Visualization

Abstract

Presented is a quantum lattice gas for Navier-Stokes fluid dynamics simulation. The quantum lattice-gas transport equation at the microscopic scale is presented as a generalization of the classical lattice-gas transport equation. A special type of quantum computer network is proposed that is suitable for implementing the quantum lattice gas. The quantum computer network undergoes a partial collapse of the wave-function at every time step of the dynamical evolution. Each quantum computer in the network comprises only a few qubits, which are entangled for only a short time period. A Chapman-Enskog type analysis of the quantum computer network indicates that the total system of qubits behaves exactly like a viscous lattice-gas fluid at the macroscopic scale. Because of the quantum mechanical nature of the scattering process, superposition of outgoing collisional possibilities occurs. The quantum lattice gas obeys detail balance in its collisions and is therefore an unconditionally stable algorithm for fluid dynamics simulation.