Computation of the N Best Parse Trees for Weighted and Stochastic Context-Free Grammars

  • Authors:
  • Víctor M. Jiménez;Andrés Marzal

  • Affiliations:
  • -;-

  • Venue:
  • Proceedings of the Joint IAPR International Workshops on Advances in Pattern Recognition
  • Year:
  • 2000

Quantified Score

Hi-index 0.00

Visualization

Abstract

Context-Free Grammars are the object of increasing interest in the pattern recognition research community in an attempt to overcome the limited modeling capabilities of the simpler regular grammars, and have application in a variety of fields such as language modeling, speech recognition, optical character recognition, computational biology, etc. This paper proposes an efficient algorithm to solve one of the problems associated to the use of weighted and stochastic Context-Free Grammars: the problem of computing the N best parse trees of a given string. After the best parse tree has been computed using the CYK algorithm, a large number of alternative parse trees are obtained, in order by weight (or probability), in a small fraction of the time required by the CYK algorithm to find the best parse tree. This is confirmed by experimental results using grammars from two different domains: a chromosome grammar, and a grammar modeling natural language sentences from the Wall Street Journal corpus.