Automatic Optimization of Multi-paradigm Declarative Programs

  • Authors:
  • Ginés Moreno

  • Affiliations:
  • -

  • Venue:
  • IBERAMIA 2002 Proceedings of the 8th Ibero-American Conference on AI: Advances in Artificial Intelligence
  • Year:
  • 2002

Quantified Score

Hi-index 0.00

Visualization

Abstract

This paper investigates the optimization by fold/unfold of functional-logic programswith operational semantics based on needed narrowing. Transformation sequences are automatically guided by tupling, a powerful strategy that avoids multiple accesses to data structures and redundant sub-computations. We systematically decompose in detail the internal structure of tupling in three low-level transformation phases (definition introduction, unfolding and abstraction with folding) that constitute the core of our automatic tupling algorithm. The resulting strategy is (strongly) correct and complete, efficient, elegant and realistic. In addition (and most important), our technique preserves the natural structure of multi-paradigm declarative programs, which contrasts with prior pure functional approaches that produce corrupt integrated programs with (forbidden) overlapping rules.