Spike and Burst Synchronization in a Detailed Cortical Network Model with I-F Neurons

  • Authors:
  • Baran Çürüklü;Anders Lansner

  • Affiliations:
  • -;-

  • Venue:
  • ICANN '01 Proceedings of the International Conference on Artificial Neural Networks
  • Year:
  • 2001

Quantified Score

Hi-index 0.00

Visualization

Abstract

Previous studies have suggested that synchronized firing is a prominent feature of cortical processing. Simplified network models have replicated such phenomena. Here we study to what extent these results are robust when more biological detail is introduced. A biologically plausible network model of layer II/III of tree shrew primary visual cortex with a columnar architecture and realistic values on unit adaptation, connectivity patterns, axonal delays and synaptic strengths was investigated. A drifting grating stimulus provided afferent noisy input. It is demonstrated that under certain conditions, spike and burst synchronized activity between neurons, situated in different minicolumns, may occur.