On Generating All Minimal Integer Solutions for a Monotone System of Linear Inequalities

  • Authors:
  • Endre Boros;Khaled M. Elbassioni;Vladimir Gurvich;Leonid Khachiyan;Kazuhisa Makino

  • Affiliations:
  • -;-;-;-;-

  • Venue:
  • ICALP '01 Proceedings of the 28th International Colloquium on Automata, Languages and Programming,
  • Year:
  • 2001

Quantified Score

Hi-index 0.00

Visualization

Abstract

We consider the problem of enumerating all minimal integer solutions of a monotone system of linear inequalities. We first show that for any monotone system of r linear inequalities in n variables, the number of maximal infeasible integer vectors is at most rntimes the number of minimal integer solutions to the system. This bound is accurate up to a polylog(r) factor and leads to a polynomial-time reduction of the enumeration problem to a natural generalization of the well-known dualization problem for hypergraphs, in which dual pairs of hypergraphs are replaced by dual collections of integer vectors in a box. We provide a quasi-polynomial algorithm for the latter dualization problem. These results imply, in particular, that the problem of incrementally generating minimal integer solutions of a monotone system of linear inequalities can be done in quasi-polynomial time.