Comparing Functional Paradigms for Exact Real-Number Computation

  • Authors:
  • Andrej Bauer;Martín Hötzel Escardó;Alex K. Simpson

  • Affiliations:
  • -;-;-

  • Venue:
  • ICALP '02 Proceedings of the 29th International Colloquium on Automata, Languages and Programming
  • Year:
  • 2002

Quantified Score

Hi-index 0.00

Visualization

Abstract

We compare the definability of total functionals over the reals in two functional-programming approaches to exact real-number computation: the extensional approach, in which one has an abstract datatype of real numbers; and the intensional approach, in which one encodes real numbers using ordinary datatypes. We show that the type hierarchies coincide up to second-order types, and we relate this fact to an analogous comparison of type hierarchies over the external and internal real numbers in Dana Scott's category of equilogical spaces. We do not know whether similar coincidences hold at third-order types. However, we relate this question to a purely topological conjecture about the Kleene-Kreisel continuous functionals over the natural numbers. Finally, although it is known that, in the extensional approach, parallel primitives are necessary for programming total first-order functions, we demonstrate that, in the intensional approach, such primitives are not needed for second-order types and below.