Learning Vector Quantization for Multimodal Data

  • Authors:
  • Barbara Hammer;Marc Strickert;Thomas Villmann

  • Affiliations:
  • -;-;-

  • Venue:
  • ICANN '02 Proceedings of the International Conference on Artificial Neural Networks
  • Year:
  • 2002

Quantified Score

Hi-index 0.01

Visualization

Abstract

Learning vector quantization (LVQ) as proposed by Kohonen is a simple and intuitive, though very successful prototype-based clustering algorithm. Generalized relevance LVQ (GRLVQ) constitutes a modification which obeys the dynamics of a gradient descent and allows an adaptive metric utilizing relevance factors for the input dimensions. As iterative algorithms with local learning rules, LVQ and modifications crucially depend on the initialization of the prototypes. They often fail for multimodal data. We propose a variant of GRLVQ which introduces ideas of the neural gas algorithm incorporating a global neighborhood coordination of the prototypes. The resulting learning algorithm, supervised relevance neural gas, is capable of learning highly multimodal data, whereby it shares the benefits of a gradient dynamics and an adaptive metric with GRLVQ.