Obstacle Classification by a Line-Crawling Robot: A Rough Neurocomputing Approach

  • Authors:
  • James F. Peters;T. C. Ahn;Maciej Borkowski

  • Affiliations:
  • -;-;-

  • Venue:
  • TSCTC '02 Proceedings of the Third International Conference on Rough Sets and Current Trends in Computing
  • Year:
  • 2002

Quantified Score

Hi-index 0.01

Visualization

Abstract

This article considers a rough neurocomputing approach to the design of the classify layer of a Brooks architecture for a robot control system. In the case of the line-crawling robot (LCR) described in this article, rough neurocomputing is used to classify sometimes noisy signals from sensors. The LCR is a robot designed to crawl along high-voltage transmission lines where noisy sensor signals are common because of the electromagnetic field surrounding conductors. In rough neurocomputing, training a network of neurons is defined by algorithms for adjusting parameters in the approximation space of each neuron. Learning in a rough neural network is defined relative to local parameter adjustments. Input to a sensor signal classifier is in the form of clusters of similar sensor signal values. This article gives a very brief description of a LCR that has been developed over the past three years as part of a Manitoba Hydro research project. This robot is useful in solving maintenance problems in power systems. A description of the basic features of the LCR control system and basic architecture of a rough neurocomputing system for robot navigation are given. A sample LCR sensor signal classification experiment is also given.