On Propagation Characteristics of Resilient Functions

  • Authors:
  • Pascale Charpin;Enes Pasalic

  • Affiliations:
  • -;-

  • Venue:
  • SAC '02 Revised Papers from the 9th Annual International Workshop on Selected Areas in Cryptography
  • Year:
  • 2002

Quantified Score

Hi-index 0.00

Visualization

Abstract

In this paper we derive several important results towards a better understanding of propagation characteristics of resilient Boolean functions. We first introduce a new upper bound on nonlinearity of a given resilient function depending on the propagation criterion. We later show that a large class of resilient functions admit a linear structure; more generally, we exhibit some divisibility properties concerning the Walsh-spectrum of the derivatives of any resilient function. We prove that, fixing the order of resiliency and the degree of propagation criterion, a high algebraic degree is a necessary condition for construction of functions with good autocorrelation properties. We conclude by a study of the main constructions of resilient functions. We notably show how to avoid linear structures when a linear concatenation is used and when the recursive construction introduced in [11] is chosen.