The Complexity of Resolution with Generalized Symmetry Rules

  • Authors:
  • Stefan Szeider

  • Affiliations:
  • -

  • Venue:
  • STACS '03 Proceedings of the 20th Annual Symposium on Theoretical Aspects of Computer Science
  • Year:
  • 2003

Quantified Score

Hi-index 0.00

Visualization

Abstract

We generalize Krishnamurthy's well-studied symmetry rule for resolution systems by considering homomorphisms instead of symmetries; symmetries are injective maps of literals which preserve complements and clauses; homomorphisms arise from symmetries by releasing the constraint of being injective.We prove that the use of homomorphisms yields a strictly more powerful system than the use of symmetries by exhibiting an infinite sequence of sets of clauses for which the consideration of global homomorphisms allows exponentially shorter proofs than the consideration of local symmetries. It is known that local symmetries give rise to a strictly more powerful system than global symmetries; we prove a similar result for local and global homomorphisms. Finally, we pinpoint an exponential lower bound for the resolution system enhanced by the local homomorphism rule.