Private Computations in Networks: Topology versus Randomness

  • Authors:
  • Andreas Jakoby;Maciej Liskiewicz;Rüdiger Reischuk

  • Affiliations:
  • -;-;-

  • Venue:
  • STACS '03 Proceedings of the 20th Annual Symposium on Theoretical Aspects of Computer Science
  • Year:
  • 2003

Quantified Score

Hi-index 0.00

Visualization

Abstract

In a distributed network, computing a function privately requires that no participant gains any additional knowledge other than the value of the function. We study this problem for incomplete networks and establish a tradeoff between connectivity properties of the network and the amount of randomness needed. First, a general lower bound on the number of random bits is shown. Next, for every k 驴 2 we design a quite efficient (with respect to randomness) protocol for symmetric functions that works in arbitrary k-connected networks. Finally, for directed cycles that compute threshold functions privately almost matching lower and upper bounds for the necessary amount of randmoness are proven.