Adaptive Bayesian Contour Estimation: A Vector Space Representation Approach

  • Authors:
  • José M. B. Dias

  • Affiliations:
  • -

  • Venue:
  • EMMCVPR '99 Proceedings of the Second International Workshop on Energy Minimization Methods in Computer Vision and Pattern Recognition
  • Year:
  • 1999

Quantified Score

Hi-index 0.00

Visualization

Abstract

We propose a vector representation approach to contour estimation from noisy data. Images are modeled as random fields composed of a set of homogeneous regions; contours (boundaries of homogeneous regions) are assumed to be vectors of a subspace of L2(T) generated by a given finite basis; B-splines, Sinc-type, and Fourier bases are considered. The main contribution of the paper is a smoothing criterion, interpretable as a priori contour probability, based on the Kullback distance between neighboring densities. The maximum a posteriori probability (MAP) estimation criterion is adopted. To solve the optimization problem one is led to (joint estimation of contours, subspace dimension, and model parameters), we propose a gradient projection type algorithm. A set of experiments performed on simulated an real images illustrates the potencial of the proposed methodology