Design of Problem-Solving Environment for Contingent Claim Valuation

  • Authors:
  • F. Oliver Bunnin;Yike Guo;John Darlington

  • Affiliations:
  • -;-;-

  • Venue:
  • Euro-Par '01 Proceedings of the 7th International Euro-Par Conference Manchester on Parallel Processing
  • Year:
  • 2001

Quantified Score

Hi-index 0.00

Visualization

Abstract

We present the design and initial implementation of a problem-solving environment that values industrial investment projects. We use the contingent claim, or real option, valuation method, which views a project as a claim to future cash flows which are dependent on underlying stochastic factors, such as the market price of a produced commodity. The problem-solving environment enables the user to use domain and mathematical level constructs to specify the nature of the project and the stochastic behaviour of underlying factors. Meaning preserving symbolic rewrite rules transform these specifications into problem representations that are suitable for numerical solution. The transformed problem representations are then combined with components implementing parallel algorithms in order to compute solutions. The aim of this approach is to benefit strategic industrial decision-making by enabling high-level and flexible problem formulation and by using high performance computational resources.