An Experimental Study and Comparison of Topological Peeling and Topological Walk

  • Authors:
  • Danny Z. Chen;Shuang Luan;Jinhui Xu

  • Affiliations:
  • -;-;-

  • Venue:
  • COCOON '02 Proceedings of the 8th Annual International Conference on Computing and Combinatorics
  • Year:
  • 2002

Quantified Score

Hi-index 0.00

Visualization

Abstract

In this paper, we present an experimental study comparing two algorithms, topological peeling and topological walk, for traversing arrangements of planar lines. Given a set H of n lines and a convex region R on a plane, both topological peeling and topological walk sweep the portion AR of the arrangement of H inside R in O(K + n log(n + r)) time and O(n + r) space, where K is the number of cells of AR and r is the number of boundary vertices of R. In our study, we robustly implemented these two algorithms using the LEDA library. Based on the implementation, we carried out experiments to conduct several comparisons, such as the arrangement traversal fashions, memory consumption, and execution time. In general, topological peeling exhibits a better control on the propagation of its sweeping curve (called the wavefront). For memory consumption, two types of measures, logical and physical memory, were examined. Our experiments showed that although both algorithms use nearly the same amount of logical memory, topological peeling could use twice as much physical memory as topological walk. For execution time, experiments revealed an interesting phenomenon that topological peeling has a 10% to 25% faster execution time than topological walk in most cases. Our analysis of this phenomenon indicates that the execution times of topological peeling and topological walk are both sensitive to the ratio of the lower input lines to all input lines. When the ratio of the lower lines to all input lines is around 85%, the two algorithms have roughly the same amount of execution time. Under this ratio, topological peeling considerably outperforms topological walk; above this ratio, topological walk slightly outperforms topological peeling.