On the relative complexity of approximate counting problems

  • Authors:
  • Martin E. Dyer;Leslie Ann Goldberg;Catherine S. Greenhill;Mark Jerrum

  • Affiliations:
  • -;-;-;-

  • Venue:
  • APPROX '00 Proceedings of the Third International Workshop on Approximation Algorithms for Combinatorial Optimization
  • Year:
  • 2000

Quantified Score

Hi-index 0.00

Visualization

Abstract

Two natural classes of counting problems that are interreducible under approximation-preserving reductions are: (i) those that admit a particular kind of efficient approximation algorithm known as an "FPRAS," and (ii) those that are complete for #P with respect to approximation-preserving reducibility. We describe and investigate not only these two classes but also a third class, of intermediate complexity, that is not known to be identical to (i) or (ii). The third class can be characterised as the hardest problems in a logically defined subclass of #P.