Queue Layouts, Tree-Width, and Three-Dimensional Graph Drawing

  • Authors:
  • David R. Wood

  • Affiliations:
  • -

  • Venue:
  • FST TCS '02 Proceedings of the 22nd Conference Kanpur on Foundations of Software Technology and Theoretical Computer Science
  • Year:
  • 2002

Quantified Score

Hi-index 0.00

Visualization

Abstract

A three-dimensional (straight-line grid) drawing of a graph represents the vertices by points in Z3 and the edges by noncrossing line segments. This research is motivated by the following open problem due to Felsner, Liotta, and Wismath [Graph Drawing '01, Lecture Notes in Comput. Sci., 2002]: does every n-vertex planar graph have a three-dimensional drawing with O(n) volume? We prove that this question is almost equivalent to an existing one-dimensional graph layout problem. A queue layout consists of a linear order 驴 of the vertices of a graph, and a partition of the edges into queues, such that no two edges in the same queue are nested with respect to 驴. The minimum number of queues in a queue layout of a graph is its queue-number. Let G be an n-vertex member of a proper minor-closed family of graphs (such as a planar graph). We prove that G has a O(1) 脳 O(1) 脳 O(n) drawing if and only if G has O(1) queue-number. Thus the above question is almost equivalent to an open problem of Heath, Leighton, and Rosenberg [SIAM J. Discrete Math., 1992], who ask whether every planar graph has O(1) queue-number? We also present partial solutions to an open problem of Ganley and Heath [Discrete Appl. Math., 2001], who ask whether graphs of bounded tree-width have bounded queue-number? We prove that graphs with bounded path-width, or both bounded tree-width and bounded maximum degree, have bounded queue-number. As a corollary we obtain three-dimensional drawings with optimal O(n) volume, for series-parallel graphs, and graphs with both bounded tree-width and bounded maximum degree.