Automated Nomenclature Labeling of the Bronchial Tree in 3D-CT Lung Images

  • Authors:
  • Hiroko Kitaoka;Yongsup Park;Juerg Tschirren;Joseph M. Reinhardt;Milan Sonka;Goeffrey McLennan;Eric A. Hoffman

  • Affiliations:
  • -;-;-;-;-;-;-

  • Venue:
  • MICCAI '02 Proceedings of the 5th International Conference on Medical Image Computing and Computer-Assisted Intervention-Part II
  • Year:
  • 2002

Quantified Score

Hi-index 0.00

Visualization

Abstract

A nomenclature labeling algorithm for the human bronchial tree down to sub-lobar segments is proposed, as a means of inter and intra subject comparisons for the evaluation of lung structure and function. The algorithm is a weighted maximum clique search of an association graph between a reference tree and an object tree. The adjacency between nodes in the association graph is defined so as to reflect the consistency between the bronchial name in the reference tree and the node connectivity in the object tree. Nodes in the association graph are weighted according to the similarity between two tree nodes in the respective trees. This algorithm is robust to various branching patterns and false branches that arise during segmentation processing. Experiments have been performed for nine airway trees extracted automatically from clinical 3D-CT data, where approximately 250 branches were contained. Of these, 95 % were accurately named.