Implementation Issues and Experimental Study of a Wavelength Routing Algorithm for Irregular All-Optical Networks

  • Authors:
  • Athanasios Bouganis;Ioannis Caragiannis;Christos Kaklamanis

  • Affiliations:
  • -;-;-

  • Venue:
  • WAE '99 Proceedings of the 3rd International Workshop on Algorithm Engineering
  • Year:
  • 1999

Quantified Score

Hi-index 0.00

Visualization

Abstract

We study the problem of allocating optical bandwidth to sets of communication requests in all-optical networks that utilize Wavelength Division Multiplexing (WDM). WDM technology establishes communication between pairs of network nodes by establishing transmitter-receiver paths and assigning wavelengths to each path so that no two paths going through the same fiber link use the same wavelength. Optical bandwidth is the number of distinct wavelengths. Since state-of-the-art technology allows for a limited number of wavelengths, the engineering problem to be solved is to establish communication between pairs of nodes so that the total number of wavelengths used is minimized. In this paper we describe the implementation and study the performance of a wavelength routing algorithm for irregular networks. The algorithm proposed by Raghavan and Upfal [17] and is based on a random walk technique. We also describe a variation of this algorithm based on a Markov chain technique which is experimentally proved to have improved performance when applied to random networks generated according to the Gn,p model.