Lexical Semantic Ambiguity Resolution with Bigram-Based Decision Trees

  • Authors:
  • Ted Pedersen

  • Affiliations:
  • -

  • Venue:
  • CICLing '01 Proceedings of the Second International Conference on Computational Linguistics and Intelligent Text Processing
  • Year:
  • 2001

Quantified Score

Hi-index 0.00

Visualization

Abstract

This paper presents a corpus-based approach to word sense disambiguation where a decision tree assigns a sense to an ambiguous word based on the bigrams that occur nearby. This approach is evaluated using the sense-tagged corpora from the 1998 SENSEVAL word sense disambiguation exercise. It is more accurate than the average results reported for 30 of 36 words, and is more accurate than the best results for 19 of 36 words.