Fixed-Parameter Complexity of lambda-Labelings

  • Authors:
  • Jirí Fiala;Ton Kloks;Jan Kratochvíl

  • Affiliations:
  • -;-;-

  • Venue:
  • WG '99 Proceedings of the 25th International Workshop on Graph-Theoretic Concepts in Computer Science
  • Year:
  • 1999

Quantified Score

Hi-index 0.00

Visualization

Abstract

A λ-labeling of a graph G is an assignment of labels from the set {0, . . . , λ} to the vertices of a graph G such that vertices at distance at most two get different labels and adjacent vertices get labels which are at least two apart. We study the minimum value λ = λ(G) such that G admits a λ-labeling. We show that for every fixed value k ≥ 4 it is NP-complete to determine whether λ(G) ≤ k. We further investigate this problem for sparse graphs (k-almost trees), extending the already known result for ordinary trees. In a generalization of this problem we wish to find a labeling such that vertices at distance two are assigned labels that differ by at least q and the labels of adjacent vertices differ by at least p (where p and q are given positive integers). We denote the minimum number of labels by L(G; p, q) (hence λ(G) = L(G; 2, 1)). We show several hardness results for L(G; p, q) including that for any p q ≥ 1 there is a λ = λ(p, q) such that deciding if L(G; p, q) ≤ λ(p, q) is NP-complete.