Applications experience with Linda

  • Authors:
  • Nicholas Carriero;David Gelernter

  • Affiliations:
  • Department of Computer Science, Yale University;Department of Computer Science, Yale University

  • Venue:
  • PPEALS '88 Proceedings of the ACM/SIGPLAN conference on Parallel programming: experience with applications, languages and systems
  • Year:
  • 1988

Quantified Score

Hi-index 0.02

Visualization

Abstract

We describe three experiments using C-Linda to write parallel codes. The first involves assessing the similarity of DNA sequences. The results demonstrate Linda's flexibility—Linda solutions are presented that work well at two quite different levels of granularity. The second uses a prime finder to illustrate a class of algorithms that do not (easily) submit to automatic parallelizers, but can be parallelized in straight-forward fashion using C-Linda. The final experiment describes the process lattice model, an “inherently” parallel application that is naturally conceived as multiple interacting processes. Taken together, the experience described here bolsters our claim that Linda can bridge the gap between the growing collection of parallel hardware and users eager to exploit parallelism.This work is supported by the NSF under grants DCR-8601920 and DCR-8657615 and by the ONR under grant N00014-86-K-0310. We are grateful to Argonne National Labs for providing access to a Sequent Symmetry.