A Hybrid Multi-objective Evolutionary Approach to Engineering Shape Design

  • Authors:
  • Kalyanmoy Deb;Tushar Goel

  • Affiliations:
  • -;-

  • Venue:
  • EMO '01 Proceedings of the First International Conference on Evolutionary Multi-Criterion Optimization
  • Year:
  • 2001

Quantified Score

Hi-index 0.01

Visualization

Abstract

Evolutionary optimization algorithms work with a population of solutions, instead of a single solution. Since multi-objective optimization problems give rise to a set of Pareto-optimal solutions, evolutionary optimization algorithms are ideal for handling multi-objective optimization problems. Over many years of research and application studies have produced a number of efficient multi-objective evolutionary algorithms (MOEAs), which are ready to be applied to real-world problems. In this paper, we propose a practical approach, which will enable an user to move closer to the true Pareto-optimal front and simultaneously reduce the size of the obtained non-dominated solution set. The efficacy of the proposed approach is demonstrated in solving a number of mechanical shape optimization problems, including a simply-supported plate design, a cantilever plate design, a hoister design, and a bicycle frame design. The results are interesting and suggest immediate application of the proposed technique in more complex engineering design problems.