On Computational Power of Quantum Branching Programs

  • Authors:
  • Farid M. Ablayev;Aida Gainutdinova;Marek Karpinski

  • Affiliations:
  • -;-;-

  • Venue:
  • FCT '01 Proceedings of the 13th International Symposium on Fundamentals of Computation Theory
  • Year:
  • 2001

Quantified Score

Hi-index 0.00

Visualization

Abstract

In this paper we introduce a model of a Quantum Branching Program(QBP) and study its computational power. We define several natural restrictions of a general QBP model, such as a read-once and a read-k-times QBP, noting that obliviousness is inherent in a quantum nature of such programs. In particular we show that any Boolean function can be computed deterministically (exactly) by a read-once QBP in width O(2n), contrary to the analogous situation for quantumfinite automata. Further we display certain symmetric Boolean function which is computable by a read-once QBP with O(log n) width, which requires a width Ω(n) on any deterministic read-once BP and (classical) randomized read-once BP with permanent transitions in each levels. We present a general lower bound for the width of read-once QBPs, showing that the upper bound for the considered symmetric function is almost tight.