Decidable Theories of Cayley-Graphs

  • Authors:
  • Dietrich Kuske;Markus Lohrey

  • Affiliations:
  • -;-

  • Venue:
  • STACS '03 Proceedings of the 20th Annual Symposium on Theoretical Aspects of Computer Science
  • Year:
  • 2003

Quantified Score

Hi-index 0.00

Visualization

Abstract

We prove that a connected graph of bounded degree with only finitely many orbits has a decidable MSO-theory if and only if it is context-free. This implies that a group is context-free if and only if its Cayley-graph has a decidable MSO-theory. On the other hand, the first-order theory of the Cayley-graph of a group is decidable if and only if the group has a decidable word problem. For Cayley-graphs of monoids we prove the following closure properties. The class of monoids whose Cayley-graphs have decidable MSO-theories is closed under free products. The class of monoids whose Cayley-graphs have decidable first-order theories is closed under general graph products. For the latter result on first-order theories we introduce a new unfolding construction, the factorized unfolding, that generalizes the tree-like structures considered by Walukiewicz. We show and use that it preserves the decidability of the first-order theory.Most of the proofs are omitted in this paper, they can be found in the full version [17].