ESRT: event-to-sink reliable transport in wireless sensor networks

  • Authors:
  • Yogesh Sankarasubramaniam;Özgür B. Akan;Ian F. Akyildiz

  • Affiliations:
  • Georgia Institute of Technology;Georgia Institute of Technology;Georgia Institute of Technology

  • Venue:
  • Proceedings of the 4th ACM international symposium on Mobile ad hoc networking & computing
  • Year:
  • 2003

Quantified Score

Hi-index 0.02

Visualization

Abstract

Wireless sensor networks (WSN) are event based systems that rely on the collective effort of several microsensor nodes. Reliable event detection at the sink is based on collective information provided by source nodes and not on any individual report. Hence, conventional end-to-end reliability definitions and solutions are inapplicable in the WSN regime and would only lead to a waste of scarce sensor resources. However, the absence of reliable transport altogether can seriously impair event detection. Hence, the WSN paradigm necessitates a collective phevent-to-sink reliability notion rather than the traditional end-to-end notion. To the best of our knowledge, reliable transport in WSN has not been studied from this perspective before.In order to address this need, a new reliable transport scheme for WSN, the event-to-sink reliable transport (ESRT) protocol, is presented in this paper. ESRT is a novel transport solution developed to achieve reliable event detection in WSN with minimum energy expenditure. It includes a congestion control component that serves the dual purpose of achieving reliability and conserving energy. Importantly, the algorithms of ESRT mainly run on the sink, with minimal functionality required at resource constrained sensor nodes. ESRT protocol operation is determined by the current network state based on the reliability achieved and congestion condition in the network. If the event-to-sink reliability is lower than required, ESRT adjusts the reporting frequency of source nodes aggressively in order to reach the target reliability level as soon as possible. If the reliability is higher than required, then ESRT reduces the reporting frequency conservatively in order to conserve energy while still maintaining reliability. This self-configuring nature of ESRT makes it robust to random, dynamic topology in WSN. Analytical performance evaluation and simulation results show that ESRT converges to the desired reliability with minimum energy expenditure, starting from any initial network state.