Uniform hashing in constant time and linear space

  • Authors:
  • Anna Ostlin;Rasmus Pagh

  • Affiliations:
  • IT University of Copenhagen, Kobenhavn NV, Denmark;IT University of Copenhagen, Kobenhavn NV, Denmark

  • Venue:
  • Proceedings of the thirty-fifth annual ACM symposium on Theory of computing
  • Year:
  • 2003

Quantified Score

Hi-index 0.00

Visualization

Abstract

Many algorithms and data structures employing hashing have been analyzed under the uniform hashing assumption, i.e., the assumption that hash functions behave like truly random functions. Starting with the discovery of universal hash functions, many researchers have studied to what extent this theoretical ideal can be realized by hash functions that do not take up too much space and can be evaluated quickly. In this paper we present an almost ideal solution to this problem: A hash function that, on any set of n inputs, behaves like a truly random function with high probability, can be evaluated in constant time on a RAM, and can be stored in O(n) words, which is optimal. For many hashing schemes this is the first hash function that makes their uniform hashing analysis come true, with high probability, without incurring overhead in time or space.