Predicting a binary sequence almost as well as the optimal biased coin

  • Authors:
  • Yoav Freund

  • Affiliations:
  • Computer Science and Engineering, The Hebrew University, Jerusalem, Israel

  • Venue:
  • Information and Computation
  • Year:
  • 2003

Quantified Score

Hi-index 0.00

Visualization

Abstract

We apply the exponential weight algorithm, introduced and Littlestone and Warmuth [26] and by Vovk [35] to the problem of predicting a binary sequence almost as well as the best biased coin. We first show that for the case of the logarithmic loss, the derived algorithm is equivalent to the Bayes algorithm with Jeffrey's prior, that was studied by Xie and Barron [38] under probabilistic assumptions. We derive a uniform bound on the regret which holds for any sequence. We also show that if the empirical distribution of the sequence is bounded away from 0 and from 1, then, as the length of the sequence increases to infinity, the difference between this bound and a corresponding bound on the average case regret of the same algorithm (which is asymptotically optimal in that case) is only 1/2. We show that this gap of 1/2 is necessary by calculating the regret of the min-max optimal algorithm for this problem and showing that the asymptotic upper bound is tight. We also study the application of this algorithm to the square loss and show that the algorithm that is derived in this case is different from the Bayes algorithm and is better than it for prediction in the worst-case.