Evolutionary Trees can be Learned in Polynomial Time in the Two-State General Markov Model

  • Authors:
  • Mary Cryan;Leslie Ann Goldberg;Paul W. Goldberg

  • Affiliations:
  • -;-;-

  • Venue:
  • FOCS '98 Proceedings of the 39th Annual Symposium on Foundations of Computer Science
  • Year:
  • 1998

Quantified Score

Hi-index 0.01

Visualization

Abstract

The j-State General Markov Model of evolution (due to Steel) is a stochastic model concerned with the evolution of strings over an alphabet of size j. In particular, the Two-State General Markov Model of evolution generalises the well-known Cavender-Farris-Neyman model of evolution by removing the symmetry restriction (which requires that the probability that a `0' turns into a `1' along an edge is the same as the probability that a `1' turns into a `0' along the edge). Farach and Kannan showed how to PAC-learn Markov Evolutionary Trees in the Cavender-Farris-Neyman model provided that the target tree satisfies the additional restriction that all pairs of leaves have a sufficiently high probability of being the same. We show how to remove both restrictions and thereby obtain the first polynomial-time PAC-learning algorithm (in the sense of Kearns et al.) for the general class of Two-State Markov Evolutionary Trees.